Centre Européen
de Recherche et d'Enseignement
des Géosciences de l'Environnement

CYCLOCARB - References

Oceanic Carbon Cycling Response to Global Temperature Changes - CYCLOCARB

Summary – IntroductionSpecific objectives approach and methodsOriginality, innovative and interdisciplinary aspectReferencesFigures and data

  1. Ipcc. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)].(Cambridge University Press, 2014).
  2. Hain, M. P., Sigman, D. M. & Haug, G. H. in Treatise on Geochemistry (Second Edition)(ed Heinrich D. Holland Turekian, Karl K.)485-517 (Elsevier, 2014).
  3. Ciais, P. et al. Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press Cambridge United Kingdom and New York NY USA, 465-570 (2013).
  4. Martínez-García, A. et al. Iron Fertilization of the Subantarctic Ocean During the Last Ice Age. Science 343, 1347-1350, doi:10.1126/science.1246848 (2014).
  5. Schmittner, A. et al. Calibration of the carbon isotope composition (δ13C) of benthic foraminifera. Paleoceanography 32, 512-530, doi:10.1002/2016PA003072 (2017).
  6. Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles 6, 185-198, doi:10.1029/92GB00190 (1992).
  7. Rubino, M. et al. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres 118, 8482-8499, doi:10.1002/jgrd.50668 (2013).
  8. Peterson, C. & Lisiecki, L. Deglacial carbon cycle changes observed in a compilation of 117 benthic δ13C time series (20-6ka). Climate of the Past Discussions, 1-37, doi:10.5194/cp-2018-25 (2018).
  9. Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geosci 5, 74-79, doi:http://www.nature.com/ngeo/journal/v5/n1/abs/ngeo1324.html - supplementary-information (2012).
  10. Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth. Planet. Sci. Lett. 286, 479-491, doi:http://dx.doi.org/10.1016/j.epsl.2009.07.014 (2009).
  11. Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat Commun 7, doi:10.1038/ncomms10796 (2016).
  12. Cartapanis, O., Galbraith, E. D., Bianchi, D. & Jaccard, S. L. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past 14, 1819-1850, doi:10.5194/cp-14-1819-2018 (2018).
  13. Wallmann, K., Schneider, B. & Sarnthein, M. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study. Clim. Past 12, 339-375, doi:10.5194/cp-12-339-2016 (2016).
  14. Anderson, R. F., Chase, Z., Fleisher, M. Q. & Sachs, J. The Southern Ocean's biological pump during the Last Glacial Maximum. Deep Sea Research Part II: Topical Studies in Oceanography 49, 1909-1938, doi:http://dx.doi.org/10.1016/S0967-0645(02)00018-8 (2002).
  15. Schmittner, A. & Somes, C. Complementary Constraints from Carbon (13C) and Nitrogen (15N) Isotopes on the Glacial Ocean's Soft‐Tissue Biological Pump. Paleoceanography (2016).
  16. Jaccard, S. et al. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 1419-1423 (2013).
  17. Menviel, L., Joos, F. & Ritz, S. P. Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial–Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory. Quat. Sci. Rev. 56, 46-68, doi:http://dx.doi.org/10.1016/j.quascirev.2012.09.012 (2012).
  18. Brzezinski, M. A. et al. A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564, doi:10.1029/2001gl014349 (2002).
  19. Bohm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73-76, doi:10.1038/nature14059 http://www.nature.com/nature/journal/v517/n7532/abs/nature14059.html - supplementary-information (2015).
  20. Guihou, A. et al. Enhanced Atlantic Meridional Overturning Circulation supports the Last Glacial Inception. Quat. Sci. Rev. 30, 1576-1582 (2011).
  21. Herguera, J. C., Herbert, T., Kashgarian, M. & Charles, C. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes. Quat. Sci. Rev. In Press, Corrected Proof (2010).
  22. Members, C. P. et al. The last interglacial ocean. Quatern. Res. 21, 123-224, doi:http://dx.doi.org/10.1016/0033-5894(84)90098-X (1984).
  23. Members, M. P. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci 2, 127-132, doi:http://www.nature.com/ngeo/journal/v2/n2/suppinfo/ngeo411_S1.html (2009).
  24. Kageyama, M. et al. The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev. Discuss. 2017, 1-33, doi:10.5194/gmd-2017-18 (2017).
  25. Lea, D. W. et al. COMPARE 2013: Constraining tropical ocean cooling during the Last Glacial Maximum. Vol. 22 (2014).
  26. Leduc, G., de Garidel-Thoron, T., Kaiser, J., Bolton, C. T. & Contoux, C. Databases for sea surface paleotemperature based on geochemical proxies from marine sediments: implications for model-data comparisons. Quaternaire 28, 201-216, doi:DOI : 10.4000/quaternaire.8034 (2017).
  27. Emile-Geay, J. & Eshleman, J. A. Toward a semantic web of paleoclimatology. Geochem. Geophys. Geosyst. 14, 457-469, doi:10.1002/ggge.20067 (2013).
  28. Khider, D. et al. PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data. Paleoceanography and Paleoclimatology 0, doi:10.1029/2019pa003632 (2019).
  29. Hansen, J., Ruedy, R., Sato, M. & Lo, K. GLOBAL SURFACE TEMPERATURE CHANGE. Rev. Geophys. 48, doi:doi:10.1029/2010RG000345 (2010).
  30. Lea, D. W. Perspectives: Paleoclimate - Ice Ages, the California Current, and Devils Hole. Science 293, 59-60 (2001).
  31. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49-54, doi:http://www.nature.com/nature/journal/v484/n7392/abs/nature10915.html - supplementary-information (2012).
  32. Team, G. GISS Surface Temperature Analysis. NASA Goddard Institute for Space Studies (2018).
  33. Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography, n/a-n/a, doi:10.1002/2015PA002874 (2016).
  34. Peterson, C. D., Lisiecki, L. E. & Stern, J. V. Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography 29, 549-563, doi:10.1002/2013PA002552 (2014).
  35. Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 315, 368 (2007).
  36. Beaufort, L. & Dollfus, D. Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57-73, doi:https://doi.org/10.1016/j.marmicro.2003.09.003 (2004).
  37. Cartapanis, O., Galbraith, E. D., Bianchi, D. & Jaccard, S. L. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past Discuss. 2018, 1-47, doi:10.5194/cp-2018-49 (2018).
  38. Hoogakker, B. A. A. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410, doi:10.1038/s41586-018-0589-x (2018).
  39. Jeltsch-Thömmes, A., Battaglia, G., Cartapanis, O., Jaccard, S. L. & Joos, F. Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data. Clim. Past 15, 849-879, doi:10.5194/cp-15-849-2019 (2019).
  40. Alves, E. Q., Macario, K. D., Urrutia, F. P., Cardoso, R. P. & Bronk Ramsey, C. Accounting for the marine reservoir effect in radiocarbon calibration. Quat. Sci. Rev. 209, 129-138, doi:https://doi.org/10.1016/j.quascirev.2019.02.013 (2019).
  41. Rind, D. Latitudinal temperature gradients and climate change. Journal of Geophysical Research: Atmospheres 103, 5943-5971, doi:10.1029/97JD03649 (1998).
  42. Roth, R., Ritz, S. P. & Joos, F. Burial-nutrient feedbacks amplify the sensitivity of atmospheric carbon dioxide to changes in organic matter remineralisation. Earth Syst. Dynam. 5, 321-343, doi:10.5194/esd-5-321-2014 (2014).
  43. Avelar, S., van der Voort, T. S. & Eglinton, T. I. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations. Carbon Balance and Management 12, 10, doi:10.1186/s13021-017-0077-x (2017).
  44. Keil, R. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments. Annual Review of Marine Science 9, 151-172, doi:10.1146/annurev-marine-010816-060724 (2017).
  45. Rostek, F. et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364, 319, doi:10.1038/364319a0 (1993).
  46. Schulte, S., Rostek, F., Bard, E., Rullkotter, J. & Marchal, O. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea. Earth. Planet. Sci. Lett. 173, 205-221 (1999).
  47. Sonzogni, C. et al. Core-top calibration of the alkenone index vs sea surface temperature in the Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 44, 1445-1460, doi:https://doi.org/10.1016/S0967-0645(97)00010-6 (1997).
  48. Sonzogni, C. et al. Temperature and Salinity Effects on Alkenone Ratios Measured in Surface Sediments from the Indian Ocean. Quatern. Res. 47, 344-355, doi:10.1006/qres.1997.1885 (1997).
  49. Darfeuil, S. et al. Sea surface temperature reconstructions over the last 70 kyr off Portugal: Biomarker data and regional modeling. Paleoceanography 31, 40-65 (2016).
  50. Barker, S., Cacho, I., Benway, H. & Tachikawa, K. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the Last Glacial Maximum. Vol. 24 (2005).
CYCLOCARB - References
Centre Européen
de Recherche et d'Enseignement
des Géosciences de l'Environnement

Erreur

Le site Web a rencontré une erreur inattendue. Veuillez essayer de nouveau plus tard.